2024年nba季后赛对阵表/NBA发展联盟/2024欧洲杯赛程图/澳客网足球竞彩

首頁 足跡
字:
背景色: 關燈 護眼
首頁 > 回到民國當土匪 > 第12章

第12章(1 / 1)

這表明它們能被交換的數目不受限制,這樣就可以產生根強的力。然而,如果攜帶力的粒子具有很大的質量,則在大距離上產生和交換它們就會很困難[奇+書+網]。這樣,它們所攜帶的力只能是短程的。另一方面,如果攜帶力的粒子質量為零,力就是長程的了。在物質粒子之間交換的攜帶力的粒子稱為虛粒子,因為它們不像“實”粒子那樣可以用粒子探測器檢測到。但我們知道它們的存在,因為它們具有可測量的效應,即它們引起了物質粒子之間的力,并且自旋為0、1或2的粒子在某些情況下作為實粒子而存在,這時它們可以被直接探測到。對我們而言,此刻它們就呈現出為經典物理學家所說的波動形式,例如光波和引力波;當物質粒子以交換攜帶力的虛粒子的形式而相互作用時,它們有時就可以被發射出來。(例如,兩個電子之間的電排斥力是由于交換虛光子所致,這些虛光子永遠不可能被檢測出來;但是如果一個電子穿過另一個電子,則可以放出實光子,它以光波的形式為我們所探測到。)

攜帶力的粒子按照其攜帶力的強度以及與其相互作用的粒子可以分成四種。必須強調指出,將力劃分成四種是種人為的方法;它僅僅是為了便于建立部分理論,而并不別具深意。大部分物理學家希望最終找到一個統一理論,該理論將四種力解釋為一個單獨的力的不同方面。確實,許多人認為這是當代物理學的首要目標。最近,將四種力中的三種統一起來已經有了成功的端倪——我將在這章描述這些內容。而關于統一余下的另一種力即引力的問題將留到以后再討論。

第一種力是引力,這種力是萬有的,也就是說,每一粒子都因它的質量或能量而感受到引力。引力比其他三種力都弱得多。它是如此之弱,以致于若不是它具有兩個特別的性質,我們根本就不可能注意到它。這就是,它會作用到非常大的距離去,并且總是吸引的。這表明,在像地球和太陽這樣兩個巨大的物體中,所有的粒子之間的非常弱的引力能迭加起來而產生相當大的力量。另外三種力或者由于是短程的,或者時而吸引時而排斥,所以它們傾向于互相抵消。以量子力學的方法來研究引力場,人們把兩個物質粒子之間的引力描述成由稱作引力子的自旋為2的粒子所攜帶。它自身沒有質量,所以所攜帶的力是長程的。太陽和地球之間的引力可以歸結為構成這兩個物體的粒子之間的引力子交換。雖然所交換的粒子是虛的,它們確實產生了可測量的效應——它們使地球繞著太陽公轉!實引力構成了經典物理學家稱之為引力波的東西,它是如此之弱——并且要探測到它是如此之困難,以致于還從來未被觀測到過。

另一種力是電磁力。它作用于帶電荷的粒子(例如電子和夸克)之間,但不和不帶電荷的粒子(例如引力子)相互作用。它比引力強得多:兩個電子之間的電磁力比引力大約大100億億億億億(在1后面有42個0)倍。然而,共有兩種電荷——正電荷和負電荷。同種電荷之間的力是互相排斥的,而異種電荷則互相吸引。一個大的物體,譬如地球或太陽,包含了幾乎等量的正電荷和負電荷。由于單獨粒子之間的吸引力和排斥力幾乎全抵消了,因此兩個物體之間純粹的電磁力非常小。然而,電磁力在原子和分子的小尺度下起主要作用。在帶負電的電子和帶正電的核中的質子之間的電磁力使得電子繞著原子的核作公轉,正如同引力使得地球繞著太陽旋轉一樣。人們將電磁吸引力描繪成是由于稱作光子的無質量的自旋為1的粒子的交換所引起的。而且,這兒所交換的光子是虛粒子。但是,電子從一個允許軌道改變到另一個離核更近的允許軌道時,以發射出實光子的形式釋放能量——如果其波長剛好,則為肉眼可以觀察到的可見光,或可用諸如照相底版的光子探測器來觀察。同樣,如果一個光子和原子相碰撞,可將電子從離核較近的允許軌道移動到較遠的軌道。這樣光子的能量被消耗殆盡,也就是被吸收了。

第三種力稱為弱核力。它制約著放射性現象,并只作用于自旋為1/2的物質粒子,而對諸如光子、引力子等自旋為0、1或2的粒子不起作用。直到1967年倫敦帝國學院的阿伯達斯·薩拉姆和哈佛的史蒂芬·溫伯格提出了弱作用和電磁作用的統一理論后,弱作用才被很好地理解。此舉在物理學界所引起的震動,可與100年前馬克斯韋統一了電學和磁學并駕齊驅。溫伯格——薩拉姆理論認為,除了光子,還存在其他3個自旋為1的被統稱作重矢量玻色子的粒子,它們攜帶弱力。它們叫w+(w正)、w-(w負)和z0(z零),每一個具有大約100吉電子伏的質量(1吉電子伏為10億電子伏)。上述理論展現了稱作自發對稱破缺的性質。它表明在低能量下一些看起來完全不同的粒子,事實上只是同一類型粒子的不同狀態。在高能量下所有這些粒子都有相似的行為。這個效應和輪賭盤上的輪賭球的行為相類似。在高能量下(當這輪子轉得很快時),這球的行為基本上只有一個方式——即不斷地滾動著;但是當輪子慢下來時,球的能量就減少了,最終球就陷到輪子上的37個槽中的一個里面去。換言之,在低能下球可以存在于37個不同的狀態。如果由于某種原因,我們只能在低能下觀察球,我們就會認為存在37種不同類型的球!

在溫伯格——薩拉姆理論中,當能量遠遠超過100吉電子伏時,這三種新粒子和光子的行為方式很相似。但是,大部份正常情況下能量要比這低,粒子之間的對稱就被破壞了。w+、w-和z0得到了大的質量,使之攜帶的力變成非常短程。薩拉姆和溫伯格提出此理論時,很少人相信他們,因為還無法將粒子加速到足以達到產生實的w+、w-和z0粒子所需的一百吉電子伏的能量。但在此后的十幾年里,在低能量下這個理論的其他預言和實驗符合得這樣好,以至于他們和也在哈佛的謝爾登·格拉肖一起被授予1979年的物理諾貝爾獎。格拉肖提出過一個類似的統一電磁和弱作用的理論。由于1983年在cern(歐洲核子研究中心)發現了具有被正確預言的質量和其他性質的光子的三個帶質量的伴侶,使得諾貝爾委員會避免了犯錯誤的難堪。領導幾百名物理學家作出此發現的卡拉·魯比亞和發展了被使用的反物質儲藏系統的cern工程師西蒙·范德·米爾分享了1984年的諾貝爾獎。(除非你已經是巔峰人物,當今要在實驗物理學上留下痕跡極其困難!)

第四種力是強作用力。它將質子和中子中的夸克束縛在一起,并將原子中的質子和中子束縛在一起。一般認為,稱為膠子的另一種自旋為1的粒子攜帶強作用力。它只能與自身以及與夸克相互作用。強核力具有一種稱為禁閉的古怪性質:它總是把粒子束縛成不帶顏色的結合體。由于夸克有顏色(紅、綠或藍),人們不能得到單獨的夸克。反之,一個紅夸克必須用一串膠子和一個綠夸克以及一個藍夸克聯結在一起(紅+綠+藍=白)。這樣的三胞胎構成了質子或中子。其他的可能性是由一個夸克和一個反夸克組成的對(紅+反紅,或綠+反綠,或藍+反藍=白)。這樣的結合構成稱為介子的粒子。介子是不穩定的,因為夸克和反夸克會互相湮滅而產生電子和其他粒子。類似地,由于膠子也有顏色,色禁閉使得人們不可能得到單獨的膠子。相反地,人們所能得到的膠子的團,其迭加起來的顏色必須是白的。這樣的團形成了稱為膠球的不穩定粒子。

色禁閉使得人們觀察不到一個孤立的夸克或膠子,這事實使得將夸克和膠子當作粒子的整個見解看起來有點玄學的味道。然而,強核力還有一個叫做漸近自由的性質,它使得夸克和膠子成為定義得很好的概念。在正常能量下,強核力確實很強,它將夸克很緊地捆在一起。但是,大型粒子加速器的實驗指出,在高能下強作用力變得弱得多,夸克和膠子的行為就像自由粒子那樣。圖是張一個高能質子和一個反質子碰撞的照片。

圖一個質子和一個反質子在高能下碰撞,產生了一對幾乎自由的夸克。

統一電磁和弱力的成功,使許多人試圖將這兩種力和強核力合并在所謂的大統一理論(或gut)之中。這名字相當夸張,所得到的理論并不那么輝煌,也沒能將全部力都統一進去,因為它并不包含引力。它們也不是真正完整的理論,因為它們包含了許多不能從這理論中預言而必須人為選擇去適合實驗的參數。盡管如此,它們可能是朝著完全的統一理論推進的一步。gut的基本思想是這樣:正如前面提到的,在高能量時強核力變弱了;另一方面,不具有漸近自由性質的電磁力和弱力在高能量下變強了。在非常高的叫做大統一能量的能量下,這三種力都有同樣的強度,所以可看成一個單獨的力的不同方面。在這能量下,gut還預言了自旋為1/2的不同物質粒子(如夸克和電子)也會基本上變成一樣,這樣導致了另一種統一。

大統一能量的數值還知道得不太清楚,可能至少有1千萬億吉電子伏特。而目前粒子加速器只能使大致能量為100吉電子伏的粒子相碰撞,計劃建造的機器的能量為幾千吉電子伏。要建造足以將粒子加速到大統一能量的機器,其體積必須和太陽系一樣大——這在現代經濟環境下不太可能做到。

上一章 書頁/目錄 下一章 请启用JavaScript正常阅读!
熱門推薦

書友正在讀: 絕色總裁愛上我 正在木葉扛米的長門 春案(1v1  劇情h) 從1984開始 都市之逍遙醫仙 [無限]我的金手指是愚人 初九 九龍拉棺林八千 戈地圖在1985 無盡尸途 全民天賦:我的武學可以無限加點 我的母親是仙尊 NBA:開局獎勵巔峰大鯊魚 戰國福星大事記 武道醫王吳東 女配畫風不對 狼系竹馬太粘人 我和萱姐的秘密 潛伏2.0 娘子且留步 文學入侵 地球農家樂 從影衛到皇后[穿書] 毒步天下:難馴妖孽夫君 草莓薄荷味 那個啞巴呀 不合格反派(重生) [獵人]冷水陽光 悠閑科舉(女穿男) 妖怪公寓 躺在你懷中 妻賢夫貴 重生之竹筠 我在東宮當伴讀 極品萬歲爺 虐文主角拒絕走劇情[快穿] 生化王朝2 重回90年之我是世界首富 斗羅:我的武魂是天女獸 我能無限就職 我的意中人 我明天可能會死 狼圖騰 美食博主穿進古代貴圈 冒牌皇后:我的皇上我做主 斗羅之元素秘境 我重寫了家族歷史 法醫嫡女:王爺,別太壞 白靜柳龍庭 他狩獵時很甜 你是我的小思念顧南舒陸景琛 折翼公子 預謀的偶然 從修為被封開始 Give Me Your Heart 吃錯糖被竹馬拯救以后(1v1) 暗戀對象被盜號之后 穿成糊咖配角上戀綜 花開花落總相依 我真的沒想要毀滅世界! 重生后我又被當貓養了 青梅壓竹馬 憮奈神功 反派也想做個好人 快穿之反派BOSS自救指南 賽博人不死于無限 當上帝重新開始進化 重生之乖乖做上將的男妻 港綜:無間道臥底?我不當人了! 皇賦 《辣文合集 高h》 我在逃生游戲里和粉絲HE了 妖媚紅顏亂天下 網王之冰帝為王 王座使徒 開局代管獨立團,震驚李云龍 白鍵扣心弦 三生不幸愛上你 花瓶娘子追夫記(重生) 最強透視高手 一個門派的誕生 綜漫之吸血鬼的傳奇 桔梗之夢(犬夜叉同人) 鬼醫傾城:攝政王有喜了安臨月軒轅夜宸 攜爾同歸 重生后死對頭突然說愛我 在那遙遠的地方,有一群草泥馬 崽竟然是我生的 [進擊的巨人]打完巨人我們就回老家結婚 基層限定日常 御夫策,袖手今生 下不為例 我的保鏢一點都不乖 快穿之合不攏腿 屬性點慈善家 故淵思池魚 大明第一暴君 古墓小新娘:小王爺,乖乖入洞房 被圈內大佬纏上了怎么辦 討喜 紅樓之史家公子 西周長歌 冰河末世,我囤積了百億物資 從金龍開始進化血脈 孿生 出軌的誘惑 我在異世界打造游戲娛樂暗黑時代 登塔我是最強的 晚尤思念茶尤香 茉莉(古言NPH) 飛刀之下 妖嬈寵妃誘君心 [紅樓]賈赦有了植物系異能 我在三體帶領人類走向神級文明 諸天從吞噬開始永恒 黎末笙戰霆宸 四合院:穿成何雨水,不做小透明 虐文女配在線改結局 逆命而行 鎧甲勇士:我策反了幽冥軍團 刻骨之愛 這個同桌有點可愛 紅樓群英傳 拐個光翎當靠山 神魂顛倒 一把砍刀平大唐 荒星有只小雄蟲 作精在帶娃綜藝爆紅了 終靈之門 女文工團員最后的下落 都市之戰神無雙葉凌天 顧大臣被迫為后 巫師:從無限提取血脈開始 玩美房東 馴養幼年死對頭后 血光天使 聊齋神話 女配掉色了 快穿女主她恃美揚威 我的叔叔全是大佬 嬌凄出軌日記 奶糖味舞蹈生甜翻了 禁忌時代*之后 混江湖的誰談戀愛啊 家父漢武帝! 秦王圖鑒 瘋犬馴養手冊[gb] [愷楚]同居三十題 春風沐雨 這屆狗仔不行,曝光要靠自己